Abstract

Chitosan phosphate was prepared and applied at different concentrations with and without low formaldehyde N-methylol finishing agent (resin) to cotton fabrics. Chitosan phosphate was characterized by FTIR, nitrogen content, and phosphorus content. The so-treated fabrics were monitored for thermogravimetric analysis (maximum decomposition temperature and residue contents after decomposition), nitrogen content, phosphorus content, tensile strength, and elongation at break. Results indicate that extent of reaction of chitosan phosphate with the cotton fabric relies on concentration of the former; increasing the concentration of the resin has practically no effect on this reaction though the resin functions as a chemical bridge between the chitosan phosphate and the cotton fabric. On the other hand, the nitrogen of the resin and the phosphorus of chitosan undergo synergetic effect and enhance the thermal properties of the treated cotton. Strength properties display higher values in the presence than in the absence of chitosan phosphate when the latter was used along with the resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2021–2026, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.