Abstract

ABSTRACT Chitosan (CHN), a deacetylated derivative of chitin, was shown to be efficient in promoting plant defense reactions. CHN oligomers of different molecular weight (MW) and degree of acetylation (DA) triggered an accumulation of phytoalexins, trans- and cis-resveratrol and their derivatives epsilon-viniferin and piceid, in grapevine leaves. Highest phytoalexin production was achieved within 48 h of incubation with CHN at 200 mug/ml with an MW of 1,500 and a DA of 20% (CHN1.5/20), while oligomers with greater MW were less efficient, indicating that a specific MW threshold could be required for phytoalexin response. Treatment of grapevine leaves by highly active CHN1.5/20 also led to marked induction of chitinase and beta-1,3-glucanase activities. CHN1.5/20 applied together with copper sulfate (CuSO(4)) strongly induced phytoalexin accumulation. CuSO(4) alone, especially at low concentrations also elicited a substantial production of phytoalexins in grapevine leaves. Evidence is also provided that CHN1.5/20 significantly reduced the infection of grapevine leaves by Botrytis cinerea and Plasmopara viticola, and in combination with CuSO(4) conferred protection against both pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call