Abstract

Modern durum wheat cultivars are more prone to ozone stress because of their high photosynthetic efficiency and leaf gas exchanges that cause a greater pollutant uptake. This, in turn, generates an increased reactive oxygen species (ROS) production that is a challenge to control by the antioxidant system of the plant, therefore affecting final yield, with a reduction up to 25%. With the aim of mitigating oxidative stress in wheat, we used chitosan nanoparticles (CHT-NPs) either unloaded or loaded with the antioxidant compound N-acetyl cysteine (NAC), on plants grown either in a greenhouse or in an open field. NAC-loaded NPs were prepared by adding 0.5 mg/mL NAC to the CHT solution before ionotropic gelation with tripolyphosphate (TTP). Greenhouse experiments evidenced that CHT-NPs and CHT-NPs-NAC were able to increase the level of the leaf antioxidant pool, particularly ascorbic acid (AsA) content. However, the results of field trials, while confirming the increase in the AsA level, at least in the first phenological stages, were less conclusive. The presence of NAC did not appear to significantly affect the leaf antioxidant pool, although the grain yield was slightly higher in NAC-treated parcels. Furthermore, both NAC-loaded and -unloaded CHT-NPs partially reduced the symptom severity and increased the weight of 1000 seeds, thus showing a moderate mitigation of ozone injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.