Abstract

Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively. However, their low aqueous solubility, high photosensitivity, and high volatility restrict their application in the control of agricultural pests. The encapsulation of volatile compounds can be an effective way of overcoming such problems. Inclusion complexes between beta-cyclodextrin (β-CD) and carvacrol (CVC) or linalool (LNL) were investigated. Inclusion complexes were prepared by the kneading method. Both complexes presented 1:1 host:guest stoichiometry and the highest affinity constants were observed at 20 °C for both molecules. The nanoparticles containing carvacrol and linalool had mean diameters of 175.2 and 245.8 nm, respectively and high encapsulation efficiencies (<90%) were achieved for both compounds. Biological assays with mites (Tetranychus urticae) showed that the nanoparticles possessed repellency, acaricidal, and oviposition activities against this organism. Nanoencapsulated carvacrol and linalool were significantly more effective in terms of acaricidal and oviposition activities, while the unencapsulated compounds showed better repellency activity. The nanoformulations prepared in this study are good candidates for the sustainable and effective use of botanical compounds in agriculture, contributing to the reduction of environmental contamination, as well as promoting the effective control of pests in agriculture.

Highlights

  • Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively

  • Beta-cyclodextrin inclusion complexes were produced with carvacrol and linalool as guest molecules

  • Nanoparticulate systems based on natural polysaccharides were prepared using the ionic gelation method and were used as carriers for carvacrol and linalool

Read more

Summary

Introduction

Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively. The increasing popularity of organic agriculture, together with the need to overcome problems associated with the emergence of resistant pests, has led to interest in natural pesticides, especially botanical insecticides and repellents, due to their easier degradation and lower toxicity in the environment. Most of these substances are site-specific and present low toxicity towards mammals and nontarget species[6,7,8,9]. Important limitations on the use of these compounds in agriculture are: (i) their low aqueous solubility, resulting in reduced contact with pathogens[16,17], and (ii) their susceptibility to degradation due to exposure to ultraviolet radiation, high temperatures, and oxidation by atmospheric oxygen[18]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.