Abstract

Abstract Electrospinning is a trendy method because of the ease of use and the high surface-to-volume ratio. The mechanical and biological properties of polylactic acid (PLA) make it one of the most enticing polymers. Gelatin and PLA together are thought to enhance cellular behavior and hydrophilicity of scaffolds. Furthermore, chitosan nanoparticles (CNPs) can be incorporated into PLA fibers to achieve controlled growth factor release. This study utilized PLA–gelatin nanofibrous scaffolds in which CNPs were encapsulated within PLA fibers to achieve a controlled release of basic fibroblast growth factor (bFGF). To produce CNPs, a simple ionic gelation reaction was used. The optimal diameter of CNPs was determined by investigating chitosan to tricalciumphosphatesodium (TPP) ratio and TPP concentration. Using a spectrophotometer, we measured the release rate of bFGF from CNPS and scaffolds. Images from a scanning electron microscope (SEM) were used to assess the effect of various concentrations of PLA and gelatin on fiber diameter. The results showed that PLA–gelatin scaffolds could stimulate the release of growth factors and promote cell proliferation. Using a two-jet electrospinning device to produce PLA–gelatin fibers in combination with CNPs incorporated within PLA fibers to release the bFGF growth factor is the novelty of this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.