Abstract

The possibility of using a novel comb polymer consisting of a chitosan backbone with grafted 44 units long poly(ethylene oxide) side chains for reducing nonspecific protein adsorption to gold surfaces functionalized by COOH-terminated thiols has been explored. The comb polymer was attached to the surface in three different ways: by solution adsorption, covalent coupling, and microcontact printing. The protein repellant properties were tested by monitoring the adsorption of bovine serum albumin and fibrinogen employing surface plasmon resonance and imaging null ellipsometry. It was found that a significant reduction in protein adsorption is achieved as the comb polymer layer is sufficiently dense. For solution adsorption this was achieved by adsorption from high pH solutions. On the other hand, the best performance of the microcontact printed surfaces was obtained when the stamp was inked either at low or at high pH. For a given comb polymer layer thickness/poly(ethylene oxide) density, significant differences in protein repellant properties were observed between the different preparation methods, and it is suggested that a reduction in the mobility of the comb polymer layer generated by covalent attachment favors a reduced protein adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call