Abstract

Drug delivery systems with controlled release have been considered important tools for the treatment of various diseases. The efficacy of the drug can be enhanced by increasing its solubility, stability, bioavailability, and specific site delivery. Herein, we investigated cisplatin (cisP) loading efficacy and release potentiality on chitosan (CS) functionalized with magnetite (M), silicon dioxide (S), and graphene oxide (GO) nanoparticles. Different nanocomposites [chitosan-coated magnetite, silicon dioxide, and graphene oxide (CS/M/S/GO); chitosan-coated magnetite and silicon dioxide (CS/M/S); chitosan-coated silicon dioxide (CS/S); and chitosan-coated magnetite (CS/M)] were prepared. The prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). DFT calculations were employed to explore the interaction mechanism of cisP with a selected chitosan-functionalized nanocomposite in the gas phase and water media. The UV–Vis spectroscopy was used to study cisP loading and release from the prepared nanocomposites. The results showed that the highest loading efficacy was achieved by CS/M and CS/M/S/GO nanocomposites (87% and 84% respectively). While the releasing potentiality for CS/M composite was the highest compared with the other ones (91%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call