Abstract
The usefulness of a coprecipitate of chitosan and kaolin as disintegrant in the pellets of microcrystalline cellulose (MCC) and hydrochlorothiazide (HCT) (as a model of poorly water-soluble drug) produced by extrusion–spheronization was evaluated in this study. The effectiveness of chitosan–kaolin coprecipitate to increase the dissolution rate was compared with that of kaolin and chitosan. A possible synergy effect was also evaluated between the coprecipitate, kaolin or chitosan and sorbitol, added to the pellets as a very water-soluble diluent. The chitosan–kaolin coprecipitate, the kaolin or the chitosan allowed pellets to be obtained of adequate size, roundness, mechanical strength and flow properties. Furthermore, the incorporation of chitosan–kaolin coprecipitate or chitosan significantly increased the dissolution rate of HCT independently of the sorbitol content. The effects on the dissolution of HCT derived from the incorporation of coprecipitate to the pellets can be attributed to its content of chitosan. However, the addition of kaolin into the pellets did not significantly affect the HCT dissolution process. The pellets incorporating coprecipitated chitosan–kaolin or chitosan and the maximum proportion of sorbitol (50%) led to the highest HCT dissolution rate and experienced a rapid and complete disintegration in the dissolution medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.