Abstract

Chitosan is a natural polysaccharide that is abundant, biocompatible and exhibits effective antifungal activity against various pathogenic fungi. However, the potential intracellular targets of chitosan in pathogenic fungi and the way of activity of chitosan are far from well known. The present work demonstrated that chitosan could inhibit Penicillium expansum, the principal causal agent of postharvest blue mold decay on apple fruits, by binding to DNA and triggering apoptosis. UV–visible spectroscopy, fluorescence spectroscopy and electrophoretic mobility assay proved the interaction between chitosan and DNA, while atomic force microscope (AFM) observation revealed the binding morphology of chitosan to DNA. Chitosan could inhibit in vitro DNA replication, and cell cycle analysis employing flow cytometry demonstrated that cell cycle was retarded by chitosan treatment. Furthermore, the reactive oxygen species (ROS) assay and membrane potential analysis showed that apoptosis was induced in P. expansum cells after exposure to chitosan. In conclusion, our results confirmed that chitosan interacts with DNA and induces apoptosis. These findings are expected to provide a feasible theoretical basis and practical direction for the promoting and implementing of chitosan in plant protection and further illuminate the possible antifungal mechanisms of chitosan against fungal pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call