Abstract
One flavonoid glycoside with demonstrated therapeutic potential for several illnesses, including cancer, is hesperidin. However, because of its limited bioavailability and solubility, it is only marginally absorbed, necessitating a delivery mechanism to reach the intended therapeutic target. Additionally, the cytoskeleton of crustaceans yields chitosan, a naturally occurring biopolymer with mucoadhesive properties that has been used to improve the absorption of advantageous chemical substances like flavonoids. Chitosan/hesperidin nanoparticles (Hes-Nanoparticles) were made using the ion gelation technique. The synthesis of Hes-Nanoparticles was confirmed by several characterization methods, including the swelling test, zeta potential, particle size, FTIR, XRD, TEM, and SEM. DPPH and ABTS were used to demonstrate radical scavenging activity in antioxidant assays of chitosan, hesperidin, and the synthesized Hes-Nanoparticles. In addition, by a viability assay against MDA-MB-231, the anticancer efficacies of chitosan, hesperidin, and the synthesized Hes-Nanoparticles were assessed. Furthermore, annexin-V/PI double staining and the cycle of cell analysis were determined by flow cytometry. The results displayed that Hes-Nanoparticles have higher antioxidant activity than chitosan and hesperidin alone. Also, it has been demonstrated that Hes-Nanoparticles are more effective in early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis than chitosan and hesperidin alone. In conclusion, Hes-Nanoparticles demonstrated more antioxidant and antitumor activities than chitosan and hesperidin alone. Moreover, it has been established that Hes-Nanoparticles, in a highly soluble form, increase activity in contrast to the poorly soluble form of hesperidin alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.