Abstract

This work aims to synthesize graft copolymers of chitosan and N-vinylimidazole (VI) with different compositions to be used as matrices for the immobilization of cysteine proteases—bromelain, ficin, and papain. The copolymers are synthesized by free radical solution copolymerization with a potassium persulfate-sodium metabisulfite blend initiator. The copolymers have a relatively high frequency of grafting and yields. All the synthesized graft copolymers are water-soluble, and their solutions are characterized by DLS and laser Doppler microelectrophoresis. The copolymers are self-assembled in aqueous solutions, and they have a cationic nature and pH-sensitivity correlating to the VI content. The FTIR data demonstrate that synthesized graft copolymers conjugate cysteine proteases. The synthesized copolymer adsorbs more enzyme macromolecules compared to non-modified chitosan with the same molecular weight. The proteolytic activity of the immobilized enzymes is increased up to 100% compared to native ones. The immobilized ficin retains up to 97% of the initial activity after a one-day incubation, the immobilized bromelain retains 69% of activity after a 3-day incubation, and the immobilized papain retains 57% of the initial activity after a 7-day incubation. Therefore, the synthesized copolymers can be used as matrices for the immobilization of bromelain, ficin, and papain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.