Abstract
The present study reported the synthesis of novel organic–inorganic hybrid nanocomposite by incorporating tin (IV) based ion exchanger into the hybrid polymer network of chitosan and gelatin prepared under vacuum for the efficient removal of heavy metal ions and toxic dyes from an aqueous fluid. The physicochemical studies such as ion exchange capacity (IEC), chemical stability, thermal stability, pH titration and distribution behaviour studies were also carried out to determine the cation exchange behaviour of the material. The surface morphology and structural properties were studied by the techniques such as FTIR, FESEM, EDS, TEM and XRD. Distribution studies confirmed the synthesized CG/STPNC had the highest selectivity for Pb2+ ions (85.3 mL/g). Maximum adsorption of methylene blue (82%) was achieved within 240 min at 500 mg of adsorbent dose, 10 mg/L of the initial concentration of dye, pH of 7 and 30 °C of temperature. Adsorption kinetic data fitted well with pseudo-second order rate model with R2 = 0.995. The correlation value 0.95 and favourable RL = 0.21 of adsorption data suggested better fit for Langmuir adsorption. Thus the synthesized nanocomposite ion exchanger was found to be a promising cation exchanger as well as an adsorbent for heavy metal ion and dye removal from textile industrial effluents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.