Abstract

The purpose of this study was to prepare and characterize a hybrid system of moxifloxacin loaded niosomes incorporated into chitosan gel as a potential carrier for topical antimicrobial delivery. The prepared system was characterized regarding entrapment efficiency, particle size, zeta potential, in vitro drug release kinetics, morphology, FTIR analysis, bioadhesive strength and rheological behavior. The effect of different formulation parameters (surfactant type, surfactant to drug ratio, cholesterol percentage and loading methodology) on moxifloxacin entrapment and drug release was evaluated. The antibacterial effectiveness of various formulations was also assessed by measuring the minimal inhibitory concentrations, minimal bactericidal concentrations and agar diffusion assay using Pseudomonas aeruginosa and Staphylococcus aureus as model pathogens. The optimized niosomal formulation showed 73% drug entrapment, 47% drug release in 8h and was ∼290nm in particle diameter and negatively charged (ζ∼−23mV). The gel-embedded niosomes exhibited pseudo-plastic flow behavior and more sustained drug release profile compared to niosomes. The niosomal formulation of moxifloxacin was the most efficient system against P. aeruginosa, while gel based formulations were superior against S. aureus. Taken together, moxifloxacin-in-niosomes-in-gels hold great promise for topical microbial infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.