Abstract

Halloysite nanotubes (HNTs) were modified with supermagnetic Fe3O4 (M-HNTs) and functionalized with chitosan (CTA) (termed as M-HNTs–CTA). Furthermore, M-HNTs–CTA were cross-linked using glutaraldehyde and applied for covalent laccase immobilization (M-HNTs–CTA–Lac). Facile-synthesized modified HNTs were structurally characterized by scanning electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. M-HNTs–CTA–Lac exhibited 92.74 mg/g of laccase immobilization capacity and 92% of activity recovery. Biochemical properties of M-HNTs–CTA–Lac exhibited higher pH and temperature stabilities, with exceptional reusability capabilities until the 11th cycle. Moreover, M-HNTs–CTA–Lac exhibited 87% of 2,2′-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)-mediated Direct Red 80 (DR80) decolorization. By the 11th cycle, M-HNTs–CTA–Lac exhibited 33% DR80 decolorization. Therefore, M-HNTs–CTA can function as CTA-modified supermagnetic nonreactors for immobilization of biomacromolecules. The investigated M-HNTs–CTA–Lac are thus biocompatible and environment-friendly biocatalysts for degradation of textile waste, such as DR80, and can be rapidly retrieved from aqueous solution by a magnet after decontamination of environmental pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call