Abstract
Potential therapies for wound management remain one of the most challenging affairs to date. Biopolymer hydrogels possess inherent properties that facilitate the healing of damaged tissue by creating a supportive and hydrated environment. Chitosan/fibroin hydrogels were formulated with poly (vinyl pyrrolidone) and cross-linked using 3-aminopropyl (diethoxy) methylsilane (APDEMS) for the aforementioned function. The hydrogels were characterized through Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their swelling response was observed using a variety of solvents. Additionally, hydrogels were investigated for biomedical applications. As the amount of fibroin added to the hydrogels increased, the swelling ratio decreased. The analysis of chorioallantoic membrane (CAM) assay revealed that higher concentrations of fibroin in the hydrogel were directly correlated with increased angiogenesis. The intragroup comparison showed that the vascular number in the CPF5 group was significantly increased (p ≤ 0.05) compared to other hydrogel groups. The wound healing efficiency of the prepared hydrogels showed that the rate of wound reduction (99.06%) was remarkably (p ≤ 0.05) high in the hydrogel group with a greater fibroin content against control (67.03%). Histological findings of wounded tissues corroborate the abovementioned results, showing dense fibrous connective tissues in the fibroin group compared to the control. The results of this work provide thorough preclinical evidence that chitosan-fibroin biopolymers are involved in enhanced angiogenesis in growing chicks and speed up wound healing in mice without any obvious toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.