Abstract

We report results of the studies relating to electrophoretic deposition of nanostructured composite of chitosan (CS)–cadmium-telluride quantum dots (CdTe-QDs) onto indium-tin-oxide coated glass substrate. The high resolution transmission electron microscopic studies of the nanocomposite reveal molecular level coating of the CdTe-QDs with CS molecules in the colloidal dispersion medium. This novel composite platform has been explored to fabricate an electrochemical DNA biosensor for detection of chronic myelogenous leukemia (CML) by immobilizing amine terminated oligonucleotide probe sequence containing 22 base pairs, identified from BCR–ABL fusion gene. The results of differential pulse voltammetry reveal that this nucleic acid sensor can detect as low as 2.56pM concentration of complementary target DNA with a response time of 60s. Further, the response characteristics show that this fabricated bioelectrode has a shelf life of about 6 weeks and can be used for about 5–6 times. The results of experiments conducted using clinical patient samples reveal that this sensor can be used to distinguish CML positive and the negative control samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.