Abstract

The design and development of green and efficient supported catalysts is the frontier direction in the field of green synthesis, which conforms to the strategic concept of green sustainable chemistry and “carbon neutrality”. Herein, we used a renewable resource chitosan (CS) derived from seafood wastes of chitin as carriers to design two different chitosan-supported palladium (Pd) nano-catalysts through different activation methods. The Pd particles were firmly and uniformly dispersed on the chitosan microspheres due to the interconnected nanoporous structure and functional groups of chitosan, proved by diverse characterizations. The chitosan supported catalysts (Pd@CS) was applied to hydrogenation of 4-nitrophenol, which showed competitive catalytic activity compared to commercial Pd/C, un-supported nano-Pd and Pd(OAc)2 catalysts, as well as excellent catalytic activity, good reusability, long-life and broad applicability in selective hydrogenation of aromatic aldehydes, suggesting potential of applications in green industrial catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.