Abstract
Correlation between electrical and antibacterial properties of chitosan/copper nanocomposites (CS/CuNPs) is investigated. We aim at achieving the minimum CuNPs concentration in a CS-matrix while keeping high antibacterial activity. UV–vis, TEM and XRD measurements confirms the formation of polygonal metallic CuNPs (ca. 30–50 nm). Interactions between NH2/OH groups of CS and CuNPs were determined by FTIR and XPS suggesting Cu chelation-induced mechanism during the CuNPs formation. DC electrical conductivity measurements reveals a percolation threshold at CuNPs volumetric concentration of ca. 0.143%. Antibacterial assays against Gram-positive bacteria and DC measurements helps correlate the antibacterial potency to the electron transfer between the negatively charged bacteria and CuNPs. Our study suggests that nanocomposite’s maximum antibacterial activity is obtained below the electrical percolation threshold at extremely low CuNPs concentrations; this fact may prove useful in the design of nontoxic nanocomposites for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.