Abstract

Microplates made of polystyrene have been widely used for immunoassays. Protein molecules that have been immobilized on a hydrophobic polystyrene microplate by passive adsorption lose their activity and suffer considerable denaturation. A new chitosan-coated microplate suitable for the covalent immobilization of enzymes has been developed. The primary amino groups of chitosan were exploited for this covalent coupling of proteins. The optical transmittance of the chitosan-coated microplate, at wavelengths of 400-800 nm, was estimated to be suitable for its application in chromogenic reaction-based bioassays. The immobilization efficiency of the chitosan-coated microplate was demonstrated to be far superior to that of a conventional microplate when tested using acetylcholinesterase (AChE) and β-glucosidase as model biomolecules, and the chitosan-coated microplate may thus have potential applications in biosensing and bioreactor systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call