Abstract

MIL-100(Fe) was synthesized under biofriendly conditions at room temperature and pressure using iron(II) chloride as the source of iron, and it was coated with chitosan (CS), a natural polysaccharide. In this study, we used a computational technique to predict the amount of drug loading in MIL-100(Fe) and MIL-100(Fe)/CS with molecular dynamics software LAMMPS. Powder X-ray diffraction analysis was conducted to characterize the chitosan-coated MIL-100(Fe) loaded with cyclophosphamide (MIL-100(Fe)/CS/CP). The drug loading and release processes were quantified using UV spectroscopy at 193 nm. The toxic effect of MIL-100(Fe)/CS/CP was determined on human breast cancer (MCF-7) cells. In vivo images and H&E analysis show inhibition properties of MIL-100(Fe)/CS/CP on tumor cells. The conducted research indicates that computational calculation provides a unique insight into the drug adsorption since a proper understanding of the atomic interaction of MIL-100(Fe)/CS with anticancer drugs is important for developing experimental investigations. The biocompatibility and anticancer properties of chitosan molecules enhanced the tumor inhibitory effect of the particles compared with the MIL-100(Fe)/CP and free cyclophosphamide treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call