Abstract

Combination therapy provides an efficient way to overcome the potential multidrug resistance and enhance anticancer efficacy. In this work, a biodegradable pH-responsive hollow mesoporous silica nanoparticle (HMSN-GM-CS-FA) was developed for co-delivery of pheophorbide a (PA) and doxorubicin (DOX). This drug delivery system possessed controlled particle size and larger inner hollow core, which endowed the nanoparticle with excellent encapsulation capacities.The uptake efficiency of drug loaded nanoparticles HMSNs-GM-CS-FA@DOX/PA in cancer cells was greatly improved by folic acid-mediated endocytosis. The nanocarrier showed excellent drug controlled release properties based on the pH-dependent swelling effect of the coating layer. More importantly, the nanoplatform could fully combine photothermal-, photodynamic- and chemotherapies to develop synergistic antitumor efficacy. This strategy of integrating multi-therapeutic functions in one single formulation promised a powerful route to construct intelligent co-delivery carriers for efficient combinational clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.