Abstract

Chitosan (Ch) capped Ch-CeO2, Ch-CeO2/Ag, Ch-CeO2/Pd and Ch-CeO2/Ag/Pd nanomaterials were fabricated using seedless and metal displacement plating method. The Ce4+ ions first formed complex with Ch through amino and hydroxyl groups and then reduced in presence of NaOH and molecular oxygen at higher temperature. Ch-Ag+ and Ch-Pd2+ complexes adsorbed on the surface of Ch-CeO2 and reduced under potential deposition. Ninhydrin reaction test was conducted to confirm the presence of chitosan on the surface of NMs. The catalytic efficiency was increases markedly with incorporating noble metal into Ch-CeO2 NMs. Ch-CeO2/Ag/Pd exhibits higher catalytic performance towards hydrogen generation due to the narrow band gap (2.65 eV) and smaller work function of CeO2 (ϕ = 2.8 eV) than that of Ag0(ϕ =4.6 eV) and Pd0 (ϕ = 5.2 eV). Hydrogen generation rates increases with temperature and activation energies were found to be 63.2, 60.3, 56.2 and 53.0 kJ/mol for Ch-CeO2, Ch-CeO2/Ag, Ch-CeO2/Pd, and Ch-CeO2/Ag/Pd, respectively. CeO2/Ag/Pd shows better catalytic efficiency due to the strong interaction between Ag/Pd metal and active support CeO2. The photocatalytic rates drastically inhibited with scavengers, demonstrate that the reactive radical oxygen species (HO and O2−), holes (h+) and electrons (e−) played major role in the NaBH4 hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.