Abstract

In the present work, Cerium (IV)-Zirconium (IV) oxide nanoparticles (CeO4ZrNPs) was successfully dispersed into Chitosan/15Gelatin nanocomposites with different quantities. The obtained chitosan-based nanocomposites represented remarkable improvements in structural, morphological, mechanical, and thermal properties. Roughness increased from 74 nm to 6.4 nm, Young’s Modulus enhanced from 1.36 GPa to 2.99 GPa. The influence of dispersed CeO4ZrNPs contents on the phase transition temperature (T g) and the non-isothermal degradation processes of chitosan-based nanocomposites were examined using Differential Scanning Galorimetry (DSC) with different heating rates. Kinetic parameters of the thermal degradation for chitosan-based nanocomposites were evaluated using Kissinger-Akahira-Sunose (KAS) and Kissenger (KIS) procedures. Chitosan-based nanocomposites showed an increase in the thermal degradation temperature with higher activation energies, indicating improved thermal stability. Thermal analysis demonstrated that chitosan-based nanocomposites became more ordered by increasing CeO4ZrNPs as inferred from the negative entropy increase. Moreover, the degradation of chitosan-based nanocomposites has been described as a non-spontaneous process. The resulting information is particularly important in applications in which there is a need to obtain chitosan nanocomposites with improved mechanical and thermal properties such as food packing industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.