Abstract

Low adsorption capacity and weak mechanical stability are the main drawbacks of chitosan (CS)-based adsorptive membranes for heavy metal ion removal. Polyvinyl alcohol (PVA) has been used to improve the mechanical stability of CS membranes, but adsorption capacity is disregarded. In the current study, the surface of the chitosan/polyvinyl alcohol (CP) membrane was modified using carboxymethyl cellulose (CMC) to increase its heavy metal ion adsorption capacity. Experimental and density functional theory (DFT) calculations were used to evaluate the heavy metal ion (As3+ and Cr3+) adsorption capabilities of CP and carboxymethyl cellulose-functionalized CP (CMC-CP) membranes. The batch adsorption process presented a higher heavy metal adsorption capacity of the CMC-CP membrane (As3+/CMC-CP = 234.78 mg/g and Cr3+/CMC-CP = 230.12 mg/g) compared to the CP membrane (As3+/CP = 89.02 mg/g and Cr3+/CP = 75.61 mg/g). The heavy metal/CMC-CP complexes confirmed higher adsorption energies (As3+/CMC-CP = −23.62 kcal/mol and Cr3+/CMC-CP = −23.21 kcal/mol) than the heavy metal/CP complexes (As3+/CP = −3.47 kcal/mol and Cr3+/CP = −2.92 kcal/mol). The electronic band structure was higher for CMC-CP (5.42 eV) compared to CP (4.43 eV). Experimental and theoretical findings were close, implying that the CMC-CP membrane has superior heavy metal adsorption capability than the CP membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call