Abstract

Chitosan has become of interest as a crop biostimulant suitable for use in sustainable agriculture since it is biocompatible, biodegradable, environmentally friendly, and readily available in large quantity. Short-term (35 d after transplanting) effects of chitosan, applied as a soil amendment at 0%, 0.05%, 0.10%, 0.15%, 0.20%, or 0.30% (w/w), on lettuce (Lactuca sativa) growth, chlorophyll fluorescence, and gas exchange were evaluated in a growth chamber study. Chitosan at 0.05%, 0.10%, and 0.15% increased leaf area from 674 to 856, 847, and 856 cm2, and leaf fresh weight from 28.6 to 39.4, 39.1, and 39.8 g, respectively. Only chitosan at 0.05% and 0.10% increased leaf dry weight from 3.42 to 4.37 and 4.35 g, respectively, while chitosan at 0.30% decreased leaf number, area, fresh and dry weight. Chitosan at 0.10%, 0.15%, 0.20%, and 0.30% increased leaf chlorophyll index from 29.8 to 34.4, 35.4, 37.5, and 41.4, respectively. Chitosan at 0.20% and 0.30% increased leaf maximum photochemical efficiency and photochemical yield, and chitosan at 0.10%, 0.15% 0.20%, and 0.30% increased leaf electron transport rate. Leaf photosynthesis rate and stomatal conductance (gS) increased from 9.3 to 12.7, 14.0, and 16.6 μmol·m−2·s−1 carbon dioxide, and from 0.134 to 0.183, 0.196, and 0.231 mol·m−2·s−1, under chitosan at 0.15%, 0.20%, and 0.30%, respectively. The results indicated that chitosan, at appropriate application rates, enhanced lettuce growth, and might have potential to be used for sustainable production of lettuce.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call