Abstract

In the present study, solid-phase microextraction (SPME) fiber was prepared by coating clay (MMT)-chitosan (CH) and dicationic ionic liquid (DIL) onto the stainless-steel wire step by step. The characterization of fibers was performed by Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction analysis, and scanning electron microscopy. The prepared fibers were evaluated for separation and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in coffee and tea samples in headspace- and direct immersion-SPME by coupling with gas chromatography/mass spectrometry. The analytical performance of MMT/CH/DIL fibers was carried out for the extraction of PAHs and compared with the performance of carboxen/polydimethylsiloxane (CAR/PDMS) and divinylbenzene/CAR/PDMS (DVB/CAR/PDMS) fibers under optimized conditions. The wider linear ranges between 0.001 and 25 μg L−1 with a coefficient of determination above 0.9962, low limits of detection between 0.0001 and 0.05 μg L−1 and good intra-day repeatability from 2.45 to 6.48 % and fiber-to-fiber reproducibility from 3.19 % to 8.82 % were obtained for all PAHs in both methods with MMT/CH/octyl (O)-DIL fiber. The extraction recoveries of coffee and tea samples ranged from 87.5 to 112 % using the MMT/CH/O-DIL fiber in both SPME methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call