Abstract

The study aimed to develop a biopolymer-based mupirocin film-forming spray (MUP-FFS) for wound healing using chitosan and α-cellulose. MUP-FFS formulation was optimized by box-Behnken design, wherein the amount of chitosan, glycerol, and microfluidizer cycles showed a significant effect on the drying time and sprayability, but drug release remained unaffected. The optimized MUP-FFS formulation prepared by 13 microfluidizer cycles containing chitosan (0.125 %), glycerol (2.76 %) was quickly sprayable with 235 s drying time. The viscosity, spray uniformity and occlusive potential were found optimum for MUP-FFS. MUP-FFS released 98.066 % of MUP, 2-fold and 4-fold greater than the marketed ointment and MUP-API. The transmission electron microscopy displayed a homogeneous fibrous network, and scanning electron microphotographs showed uniform drug distribution on the MUP-film surface. The antimicrobial study revealed the efficacy of MUP-FFS against S.aureus and E.coli, wherein the former was more susceptible to formulation than the later. MUP-FFS indicated better wound contraction and healing than other groups on 7th and 14th day in rats. On Day-21, MUP-FFS could regress TGF-β1 to a normal level similar to the marketed formulation, which was also reflected in histopathological observations. Therefore, MUP-FFS can be a treatment option for chronic wounds, applied without touch and with minimal mechanical pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.