Abstract

Chitosan was impregnated into porous activated coal to produce a multifunctional chitosan/activated coal (Cs/Ac) composite. The resulted Cs/Ac was characterized and utilized as a cost–effective adsorbent for Mn(VII) at altered temperatures (i.e., 25, 35, and 45 °C). The adsorption results were fitted to classical as well as advanced statistical physics models. The Freundlich equation described well the achieved experimental data at all temperatures. Enhancing the Langmuir adsorption capacity from 203.26 to 224.03 mg/g with temperature indicated that Mn(VII) adsorption was an endothermic process. Steric, energetic and thermodynamics data of the double layer model with two energy sites (i.e., the best fit statistical model) were completely interpreted. The number of Mn(VII) per adsorption site (n) was between 0.76 and 0.92 suggested the presence of multi–docking and multi–interactions mechanisms. The active sites density (NM) of the Cs/Ac decreased with improving temperature. Energetically, Mn(VII) uptake by Cs/Ac was governed by physical interactions (i.e., adsorption energy <40 kJ/mol). Macroscopically, the interaction between Mn(VII) and Cs/Ac was spontaneous. Overall, modification of the Ac by the used marine biomass (Cs) produced a promising Mn(VII) adsorbent and also, the application of physical analysis offered a deep interpretation for the adsorption mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.