Abstract

CHI3L1 (chitinase-3-like protein 1) is a glycoprotein consisting of 383 amino acids with a molecular mass of 40 kDa, and its serum level is elevated in inflammatory diseases. Although CHI3L1 is described as a biomarker of inflammation, the function of this protein is not completely understood. In the present study, we examined the regulation of CHI3L1 in primary human skeletal muscle cells. Moreover, we analysed potential autocrine effects of CHI3L1. We show that myotubes express CHI3L1 in a differentiation-dependent manner. Furthermore, pro-inflammatory cytokines up-regulate CHI3L1 expression (6-fold) and release (3-fold). Importantly, CHI3L1 treatment blocked TNFα (tumour necrosis factor α)-induced inflammation by inhibiting NF-κB (nuclear factor κB) activation in skeletal muscle cells. We show that this effect is mediated via PAR2 (protease-activated receptor 2). In addition, CHI3L1 treatment diminished the TNFα-induced expression and secretion of IL (interleukin)-8, MCP1 (monocyte chemoattractant protein 1) and IL-6. In addition, impaired insulin action at the level of Akt and GSK3α/β (glycogen synthase kinase 3α/β) phosphoryl-ation and insulin-stimulated glucose uptake was normalized by CHI3L1. In conclusion, the novel myokine CHI3L1, which is induced by pro-inflammatory cytokines, can counteract TNFα-mediated inflammation and insulin resistance in human skeletal muscle cells, potentially involving an auto- and/or para-crine mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.