Abstract

The two chitinase genes, LbCHI31 and LbCHI32 from Limonium bicolor, were, respectively, expressed in Escherichia coli BL21 strain. The intracellular recombinant chitinases, inrCHI31 and inrCHI32, and the extracellular exrCHI31 and exrCHI32 could be produced into E. coli. The exrCHI31 and exrCHI32 can be secreted into extracellular medium. The optimal reaction condition for inrCHI31 was 5 mmol/L of Mn2+ at 40°C and pH 5.0 with an activity of 0.772 U using Alternaria alternata cell wall as substrate. The optimal condition of inrCHI32 was 5 mmol/L of Ba2+ at 45°C and pH 5.0 with an activity of 0.792 U using Valsa sordida cell wall as substrate. The optimal reaction condition of exrCHI31 was 5 mmol/L of Zn2+ at 40°C and pH 5.0, and the activity was 0.921 U using the A. alternata cell wall as substrate. Simultaneously, the optimal condition of exrCHI32 was 5 mmol/L of K+ at 45°C and pH 5.0, with V. sordida cell wall as the substrate, and the activity was 0.897 U. Furthermore, the activities of extracellular recombinant enzymes on fungal cell walls and compounds were generally higher than those of the intracellular recombinant enzymes. Recombinant exrCHI31 and exrCHI32 have better hydrolytic ability on cell walls of different fungi than synthetic chitins and obviously showed activity against A. alternata.

Highlights

  • Fungal phytopathogens are one of the major constraints in global food production as they cause many of the world’s most notorious plant diseases [1]

  • The plants that expressed the endochitinase CHI42 gene from Metarhizium anisopliae were consistently resistant to the soil-borne pathogen, Rhizoctonia solani, which suggests a direct relationship between enzyme activity and a reduction in the foliar area affected by fungal lesions [5]

  • A chitinase gene CHI30 from Streptomyces olivaceoviridis ATCC 11238 was transformed into pea and the transgenic pea inhibited the development of T. harzianum in vitro [7]

Read more

Summary

Introduction

Fungal phytopathogens are one of the major constraints in global food production as they cause many of the world’s most notorious plant diseases [1]. Overexpression of the chitinase gene, BbCHI1, from Beauveria bassiana enhanced disease resistance to C. chrysosperma in transformed poplar plants, which indicated that this gene is potentially useful in protecting these trees against fungal diseases [4]. The plants that expressed the endochitinase CHI42 gene from Metarhizium anisopliae were consistently resistant to the soil-borne pathogen, Rhizoctonia solani, which suggests a direct relationship between enzyme activity and a reduction in the foliar area affected by fungal lesions [5]. Transgenic wheat that expressed a barley class II chitinase exhibited enhanced resistance against Fusarium graminearum (Fusarium head blight) [8]. These studies suggest that plant chitinases are involved in plant resistance to

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call