Abstract

The volume and location of intracranial hematomas are well-known prognostic factors for traumatic brain injury. The aim of this study was to determine the relationship of serum biomarkers S100β, glial fibrillary acidic protein, neuron-specific enolase, total tau, phosphorylated neurofilament heavy chain, serum amyloid A1 (SAA1), C-reactive protein, procalcitonin (PCT), and chitinase-3-like protein 1 (YKL-40) with traumatic brain injury severity and the amount and location of hemorrhagic traumatic lesions. A prospective observational cohort of 115 patients with a Glasgow Coma Scale (GCS) score of 3-15 were evaluated. Intracranial lesion volume was measured from the semiautomatic segmentation of hematoma on computed tomography using Analyze software. The establishment of possible biomarker cutoff points for intracranial lesion detection was estimated using the Youden Index (J) obtained from the area under the receiver operating characteristic curve. SAA1, YKL-40, PCT, and S100β showed the most robust association with level of consciousness, both with total GCS and motor score. Biomarkers significantly correlated with volumetric measurements of subdural hematoma, traumatic subarachnoid hemorrhage, intraparenchymal hemorrhage, intraventricular hemorrhage, and total amount of bleeding. The type of intracranial hemorrhage was associated with various release patterns of neurobiochemical markers. YKL-40, SAA1, C-reactive protein, and PCT combined with S100β were the most promising biomarkers to determine the presence, location, and extent of traumatic intracranial lesions. Combination of biomarkers further increased the discriminatory capacity for the detection of intracranial bleeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call