Abstract
Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules that can induce nodule organogenesis in the cortex of legume roots in a host-specific way. The multi-unsaturated fatty acyl and the O-acetyl moieties of the LCOs of Rhizobium leguminosarum biovar viciae were shown to be essential for obtaining root nodule induction in Vicia sativa plants. We have used ballistic microtargeting as a novel approach to deliver derivatives of the nodulation signal molecules inside the roots of V. sativa. This method offers the unique ability to introduce soluble compounds into the tissue at a small area. The mitogenic effect of microtargeting of chitin oligosaccharides, including an analysis of the influence of the chain length and modifications, was tested in a qualitative assay. The role of a cell division factor from the root stele, uridine, has also been examined in these experiments. The results show that O-acetylated chitin oligosaccharides can induce root cortical cell divisions when delivered by microtargeting. For this effect it is essential that uridine is co-targeted. The foci of cortical cell division were often similar to root nodule primordia. Anatomical examination also revealed chimeric structures that share characteristics with lateral root and nodule primordia. Our data favour a model in which the oligosaccharide moiety of the rhizobial LCO induces cortical cell division and the fatty acyl moiety plays a role in transport of the LCO into the plant tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.