Abstract

Chitin and chitosan are natural polysaccharide polymers. These polymers have been used in several agricultural, food protection and nutraceutical applications. Moreover, chitin and chitosan have been also used in biomedical and biotechnological applications as drug delivery systems or in pharmaceutical formulations. So far, there are only few studies dealing with arsenic (As) removal from groundwater using chitin or chitosan and no evidence of the use of these natural polymers for arsenic trioxide (As2O3) delivery in tumor therapy. Here we suggest that chitin and/or chitosan might have the right properties to be employed as efficient polymers for such applications. Besides, nanotechnology offers suitable tools for the fabrication of novel nanostructured materials of natural origin. Since different nanostructured materials have already been employed successfully in various multidisciplinary fields, we expect that the integration of nanotechnology and natural polymer chemistry will further lead to innovative applications for environment and medicine.

Highlights

  • Chitin is an abundant natural polysaccharide produced by arthropods and crustaceans

  • Chitin and chitosan are highly basic polysaccharides with unique properties like the ability to form films [5] to react with polyanions [6,7] as well as to chelate and remove metal ions [8]

  • A wide variety of medical applications for chitin and chitosan derivatives have been reported in the last few years [9,10,11]

Read more

Summary

Introduction

Chitin is an abundant natural polysaccharide produced by arthropods and crustaceans. Chitin is found in diatoms, nematodes, molluscs and as a structural polysaccharide in basidiomycetes and. The versatitily of chitin and chitosan was emphasized in two recent, and somehow controversial, applications in the field of arsenic chemistry. The potential of chitin and chitosan can be exploited either for inorganic arsenic removal in groundwater or in the design of novel delivery vectors for arsenic trioxide (As2O3) in tumor therapy. While a high dose of inorganic arsenic (iAs) is toxic for individuals, As2O3 is used as an antineoplastic agent in most common malignancies. We think that this interesting paradoxical behavior merits a deeper investigation in the near future by investigators and clinicians involved in these two different research fields

Chitin and Chitosan for Arsenic Species Complexation and Removal
Chitosan for As2O3 Incorporation and Delivery
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.