Abstract

We demonstrate a Kerr-lens mode-locked Ti:sapphire oscillator that generates 130-nJ, 26-fs and 220-nJ, 30-fs pulses at a repetition rate of 11 MHz. The generation of stable broadband, high-energy pulses from an extended-cavity oscillator is achieved by the use of chirped multilayer mirrors to produce a small net positive dispersion over a broad spectral range. The resultant chirped picosecond pulses are compressed by a dispersive delay line that is external to the laser cavity. The demonstrated peak powers, in excess of 5 MW, are to our knowledge the highest ever achieved from a cw-pumped laser and are expected to be scalable to tens of megawatts by an increase in the pump power and (or) a decrease in the repetition rate. The demonstrated source permits micromachining of any materials under relaxed focusing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.