Abstract

Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.