Abstract

We analyze the two classic methods for chirped Integrated Bragg Gratings (IBGs) in Silicon-on-Insulator technology using the transfer matrix method based on the effective refractive index (neff) technique, which translates the geometry of an IBG into a matrix of neff depending on the wavelength. We also implement a procedure that allows engineering of the chirped IBG parameters, given a required bandwidth (BW) and group delay (GD). Finally, a complementary method for designing chirped IBG is proposed, showing a significant improvement in the bandwidth of the device or a moderation in the variation of the geometrical parameters of the grating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call