Abstract

Ultrasound radiation force has been proposed to increase the targeting efficiency in ultrasonic molecular imaging and drug delivery. A chirp excitation technique is proposed to increase the radiation force induced microbubble displacement and might potentially be used for enhancing the targeting efficiency of microbubble clouds. In this study, a modified Rayleigh-Plesset equation is used to estimate the radius-time behavior of insonified microbubbles, and the translation of insonified microbubbles is calculated by using the particle trajectory equation. Simulations demonstrate that the chirp excitation is superior to the sinusoidal one in displacing microbubbles with a wide-size distribution, and that the performance is dependent on the parameters of the chirp signal such as the center frequency and frequency range. For Gaussian size distributed microbubble clouds with mean diameter of 3.5 microm and variance of 1, a 2.25 MHz chirp with frequency range of 1.5 MHz induces about 59.59% more microbubbles over a distance of 10 microm during 200 micros insonification, compared to a 2.25 MHz sinusoidal excitation with equal acoustic pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call