Abstract

We report a chiral gel of vesicles and disklike micelles that originated from achiral molecules. The supramolecular chirality was obtained via regulating pH, in which a sol-gel-sol transition in a colloidal system consisting of a gelator, 4,4-di(2,3-dicarboxylphenoxyl)azobenzene (AzoNa4), and a zwitterionic surfactant, tetradecyldimethylamine oxide (C14DMAO), happened. The supramolecular chirality was related to the state of aggregation, i.e., only the condensed gels show chiral sense and sols are chiral-silent. The coexistence of vesicles and disklike micelles was captured for the first time in supramolecular chiral hydrogels by cryo- and freeze-fracture transmission electron microscopy (cryo- and FF-TEM) observations. Ascribed to the photoisomerization of the azobenzene units, upon alternative UV/visible light irradiation, the gel chirality can be switched reversibly with the macroscopic changes between vesicles/disks and wormlike micelles. A pH- and light-dual-responsive chiroptical switch can be constructed, which may require understanding the regulating membrane permeability and reagent release of structural transformation through photoisomerization and also require understanding the origin of gelation-induced supramolecular chirality completely based on achiral molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call