Abstract

Ligand-induced chirality in transition-metal oxide (TMO) nanostructures have great potential for designing materials with tunable chiroptical effects. Herein, a facile strategy is reported to prepare chiroptical active nickel-oxide hybrids combined with pH adjustment, and the redox treatment results in ligand transformation, which is attributable to multiple optical transitions in the TMO nanostructures. The theoretical calculation also explains the chiral origins based on their complex models based on empirical analysis. It is also shown that enantiomeric TMO nanoparticles can be used as chiral inducers for chiroptical sensitive polymerization. These results demonstrate that TMO nanostructures can provide rational control over photochemical synthesis and chiral transfer of inorganics nanoarchitecture chirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.