Abstract

This paper aims to inspire experimentalists to carry out proposed new chiroptical experiments springing from the theoretical study of the role of parity violation in the origin of biomolecular homochirality and to provide a brief update on the current status of calculations of the electroweak parity-violating energy difference (PVED) between enantiomers. If the PVED did select life's handedness, we would expect to find life on other planets consistently using the same hand as terrestrial biochemistry. Much more importantly, even finding the "wrong" hand (rather than a racemic mixture) on another planet could be the homochiral signature of life, and we discuss our proposal for chiroptical detection of life on extra-solar planets. The PVED may also have an exciting future as a "molecular footprint" of fundamental physics: comparison of calculated PVEDs with measured values could one day allow chemists to do "table-top particle physics" more cheaply with improved chiroptical techniques instead of ever larger particle accelerators. We discuss our proposed chiroptical method to measure the PVED by using molecular beams. To our knowledge, optical rotation has not yet been measured in molecular beams, but the rewards of doing so include a host of other "first ever" results in addition to measurement of the PVED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call