Abstract
Chiroptical spectroscopy is used to investigate the properties of an optically pure dinuclear copper(I) trefoil knot. For the metal-to-ligand charge tranfer (MLCT) transition in the visible region (520 nm), the electric and magnetic transition dipole moments are determined from absorption and circular dichroism spectra: 2.8 Debye and 0.5 Bohr magneton (muB). Circular polarization in the luminescence (CPL) of the knot is determined and this allows the electric and magnetic transition dipole moments in emission to be calculated: 0.02 Debye and 0.003 muB. The large difference between the moments in absorption and emission shows that the emission observed does not originate directly from the 1MLCT state. Given the low probability for radiative decay we assign the long-lived emitting excited state to a 3MLCT state. The copper(I) trefoil knot is found to quench the emission from TbIII and EuIII(dpa)3(3)-(dpa = pyridine-2,6-dicarboxylate) with a bimolecular rate constant of 3.2 and 3.3 x 10(7)M(-1)S(-1), respectively, at room temperature in water-acetonitrile (1:1 by volume). Experimental results indicate that the (lambda)-knot preferentially quenches the lambda enantiomer of the lanthanide complex with an enantioselectivity (ratio of quenching rate constants for lambda and lambda: kqlambda/kqdelta) of 1.012+/-0.002 for EuIII and 1.0180+/-0.003 for TbIII.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.