Abstract

Chironomus riparius are sediment-dwelling invertebrates in freshwater ecosystems and are used as indicators of environmental pollution. Their habitat is threatened by high levels of contaminants such as microplastics and organic matter. A promising strategy for the eco-friendly degradation of pollutants is the use of bacteria and their enzymatic activity. The aim of this study was to characterize for the first time bacteriobiota associated with the gut of C. riparius larvae from nature and laboratory samples, to compare it with sediment and food as potential sources of gut microbiota, and to assess its ability to degrade cellulose, proteins, and three different types of microplastics (polyethylene, polyvinyl chloride, and polyamide). The metabarcoding approach highlighted Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota as most abundant in both gut samples. Culturable microbiota analysis revealed Metabacillus idriensis, Peribacillus simplex, Neobacillus cucumis, Bacillus thuringiensis/toyonensis, and Fictibacillus phosphorivorans as five common species for nature and laboratory samples. Two P. simplex and one P. frigoritolerans isolates showed the ability for intensive growth on polyethylene, polyvinyl chloride, and polyamide. Both cellulolytic and proteolytic activity was observed for Paenibacillus xylanexedens and P. amylolyticus isolates. The characterized strains are promising candidates for the development of environmentally friendly strategies to degrade organic pollution and microplastics in freshwater ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.