Abstract

Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly process under methanolic and aqueous conditions to produce helical rosette nanotubes (RNTs), were synthesized and characterized. The built-in molecular chirality in the twin-G∧C building blocks led to the supramolecular chirality exhibited by the RNTs, as evidenced by the CD activity. Depending on the motifs and environmental conditions, mirror-image supramolecular chirality due to absolute molecular chirality, solvent-induced and structure-dependent supramolecular chirality inversion, and pH-controlled chiroptical switching were observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call