Abstract

We performed a chirality-controlled crystal growth of transition metal disilicide NbSi2 and TaSi2 by using a laser-diode-heated floating zone (LDFZ) method. The crystal chirality was evaluated in the crystals of centimeters in length by performing single crystal X-ray diffraction as well as probing a spin polarization originating from the chirality-induced spin selectivity (CISS) effect. The crystals of right-handed NbSi2 and of left-handed TaSi2 were obtained in the conventional LDFZ crystal growth, while the left-handed NbSi2 and right-handed TaSi2 crystals were grown by the LDFZ method with the composition-gradient feed rods. The spin polarization via the CISS was observed over centimeters in the NbSi2 single crystals and the sign of the CISS signals was dependent on the chirality of crystals. The correlation between the crystal chirality and CISS signals indicates that the CISS measurements work as a non-destructive method for chirality determination even in centimeter-long specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.