Abstract

The photonic spin Hall effect (PSHE), featured by a spin-dependent shift driven by its polarization handedness, is proposed to facilitate the applications in precision metrology and quantum information processing. Here, due to the magnetoelectric coupling of the chirality, the PSHE is accompanied with Goos-Hänchen and Imbert-Fedorov effects. Taking advantage of this superiority, the transverse shift (TS) and longitudinal shift (LS) can be applied simultaneously. Rearranging the PT-symmetric scattering matrix, the responsive PSHE near the exceptional points and their basic physical mechanisms are discussed in detail in the case of complex chirality κ. Re[κ] and Im[κ] regulated the rich (at multi-angle), gaint (reach upper limit) and tunable (magnitude and direction) TS and LS, respectively. Based on the chirality-modulated PSHE, the novel applications in binary code conversion and barcode encryption are proposed systematically. By incorporating the quantum weak measurement technology, our applications provide new mechanisms to realize optoelectronic communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.