Abstract

Molecular spins are promising building blocks of future quantum technologies thanks to the unparalleled flexibility provided by chemistry, which allows the design of complex structures targeted for specific applications. However, their weak interaction with external stimuli makes it difficult to access their state at the single-molecule level, a fundamental tool for their use, for example, in quantum computing and sensing. Here, an innovative solution exploiting the interplay between chirality and magnetism using the chirality-induced spin selectivity effect on electron transfer processes is foreseen. It is envisioned to use a spin-to-charge conversion mechanism that can be realized by connecting a molecular spin qubit to a dyad where an electron donor and an electron acceptor are linked by a chiral bridge. By numerical simulations based on realistic parameters, it is shown that the chirality-induced spin selectivity effect could enable initialization, manipulation, and single-spin readout of molecular qubits and qudits even at relatively high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.