Abstract
Monolayer transition metal dichalcogenides exhibit valley-dependent excitonic characters with a large binding energy, acting as the building block for future optoelectronic functionalities. Herein, combined with pump-probe ultrafast transient transmission spectroscopy and theoretical simulations, we reveal the chirality-dependent trion dynamics in h-BN encapsulated monolayer tungsten disulfide. By resonantly pumping trions in a single valley and monitoring their temporal evolution, we identify the temperature-dependent competition between two relaxation channels driven by chirality-dependent scattering processes. At room temperature, the phonon-assisted upconversion process predominates, converting excited trions to excitons within the same valley on a sub-picosecond (ps) time scale. As temperature decreases, this process becomes less efficient, while alternative channels, notably valley depolarization process for trions, assume importance, leading to an increase of trion density in the unpumped valley within a ps time scale. Our time-resolved valley-contrast results provide a comprehensive insight into trion dynamics in 2D materials, thereby advancing the development of novel valleytronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.