Abstract

Water-soluble ligand protected optically active silver nanostructures were synthesised in a one-step reduction and capping process mediated by thiol-containing biomolecules. The synthesis was performed successfully with d- and l-cysteine and l-glutathione. The chiroptical properties of the obtained nanostructures were investigated by circular dichroism spectroscopy in the ultraviolet and visible wavelength range. They exhibit a g-value of up to 0.7%, which is about one order of magnitude larger compared to particles prepared by citrate reduction followed by a ligand exchange reaction. The structure and composition of the prepared materials were characterised by transmission electron microscopy, energy-dispersive X-ray and X-ray photoelectron spectroscopy. Although these structures do not have a chiral geometry, they show mirror image g-values when capped with d- and l-cysteine. This indicates that the underlying chirality transfer mechanism is based on an electric field polarisation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.