Abstract

AbstractStereoregular cis‐transoidal poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant group (poly‐1‐H) was found to form a preferred‐handed helix upon complexation with various optically active pyrrolidines and piperazines in dilute dimethyl sulfoxide and water, and the complexes exhibited characteristic induced circular dichroisms (ICDs) in the UV‐vis region of the polymer backbone. The Cotton effect signs in water reflect the absolute configuration of the pyrrolidines. The sodium salt of poly‐1‐H (poly‐1‐Na) and poly‐1‐H in the presence of optically active amines formed lyotropic nematic and cholesteric liquid crystalline phases in concentrated water solutions, respectively, indicating the rigid‐rod characteristic of the polymer main chain regardless of the lack of a single‐handed helix, as evidenced by the long persistence length of about 18 nm before and after the preferred‐handed helicity induction in the polymer. X‐ray diffraction of the oriented films of the nematic and cholesteric liquid crystalline polymers exhibited almost the same diffraction pattern, suggesting that both polymers have the same helical structure; dynamically racemic and one‐handed helices, respectively. On the basis of the X‐ray analysis, a possible helical structure of poly‐1 is proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1383–1390, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.