Abstract

The anomalous generation of chirality with mass effects via the axial Ward identity and its dependence on the Schwinger mechanism is reviewed, utilizing parity violating homogeneous electromagnetic background fields. The role vacuum asymptotic states play on the interpretation of expectation values is examined. It is discussed that observables calculated with an in–out scattering matrix element predict a scenario under Euclidean equilibrium. A notable ramification of which is a vanishing of the chiral anomaly. In contrast, it is discussed observables calculated under an in–in, or real-time, formalism predict a scenario out-of equilibrium, and capture effects of mean produced particle–antiparticle pairs due to the Schwinger mechanism. The out-of equilibrium chiral anomaly is supplemented with exponential quadratic mass suppression as anticipated for the Schwinger mechanism. Similar behavior in and out-of equilibrium is reviewed for applications including the chiral magnetic effect and chiral condensate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call